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Hard-particle packings have provided a rich source of outstanding theoretical problems and served
as useful starting points to model the structure of granular media, liquids, living cells, glasses, and
random media. The nature of ‘‘jammed’’ hard-particle packings is a current subject of keen interest.
Elsewhere, we introducedrigorousandefficientlinear-programming algorithms to assess whether a
hard-sphere packing is locally, collectively, or strictly jammed, as defined by Torquato and Stillinger
@J. Phys. Chem. B105, 11849~2001!#. One algorithm applies to ideal packings in which particles
form perfect contacts. Another algorithm treats the case of jamming in packings with significant
interparticle gaps. We have applied these algorithms to test jamming categories of ordered lattices
as well as random packings of circular disks and spheres under periodic boundary conditions. The
random packings were produced computationally with a variety of packing generation algorithms,
all of which should, in principle, produce at least collectively jammed packings. Our results
highlight the importance of jamming categories in characterizing particle packings. One important
and interesting conclusion is that the amorphous monodisperse sphere packings with densityw
'0.64 were for practical purposes strictly jammed in three dimensions, but in two dimensions the
monodisperse disk packings at previously reported ‘‘random close packed’’ densities ofw'0.83
were not even collectively jammed. On the other hand, amorphous bidisperse disk packings with
density of w'0.84 were virtually strictly jammed. This clearly demonstrates one cannot judge
‘‘stability’’ in packings based solely on local criteria. Numerous interactive visualization models are
provided on the authors’ webpage. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1633647#

I. INTRODUCTION

Packings of hard particles interacting only with infinite
repulsive pairwise forces on contact are applicable as models
of complex many-body systems because repulsive interac-
tions are the primary factor in determining their structure.
Hard-particle packings are therefore widely used as simple
models for granular materials,1,2 glasses,3 liquids,4 and other
random media,5 to mention a few examples. Furthermore,
hard-particle packings, and especially hard-sphere packings,
have inspired mathematicians and been the source of numer-
ous challenging~many still open! theoretical problems.6

We focus our attention in this paper on the venerable
idealized hard-sphere model, i.e., the only interparticle inter-
action is an infinite repulsion for overlapping particles, since
this enables us to be precise about the important concept of
‘‘jamming.’’ In particular, a hierarchical classification
scheme for jammed packings intolocally, collectively, and
strictly jammedpackings was proposed in Ref. 7. This clas-

sification is closely related to the concepts of ‘‘rigid’’ and
‘‘stable’’ packings found in the mathematics literature.8,9 The
idealized hard-sphere model is in a sense the9Ising model9
for studying a variety of hard-particle physical systems, and
the importance of understanding it in detail cannot be over-
stated. The term jamming is used in a different sense in the
modeling of granular media, which includes effects such as
friction, adhesion, particle deformability, etc., and, by defi-
nition, hard-sphere systems do not include these effects. It is
also important to note that we do not discuss dynamical ef-
fects in hard-particle packings. In the present work, hard-
sphere jamming is presented from a rigorous perspective that
focuses on thegeometryof the final packed states. We note
that extensions of this work to packings of nonspherical par-
ticles ~such as ellipses, ellipsoids, or spherocylinders! are
possible and the subject of current and future research.

There are still many important and challenging questions
open even for the simplest type of hard-particle packings,
i.e., monodisperse packings of smooth perfectly impen-
etrable spheres. One important category of open problemsa!Electronic mail: torquato@electron.princeton.edu
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pertains to the enumeration and classification of both ordered
and disordered jammed circular disk and sphere packings for
the various jamming categories described in the following.
Since one cannot enumerate all possible packings even for a
small number of particles, it is desirable to devise a small set
of parameters that can characterize packings well. Two im-
portant scalar properties of packings are thedensity (packing
fraction) f andorder metricc. For any two statesX andY,
cX.cY implies that stateX is to be considered as more
ordered than stateY. Candidates for such an order metric
include various translational and orientational order
parameters,5 but the search for better order metrics is still
very active.

Figure 1 from Ref. 10 shows a conjectured region of
feasible hard-sphere packings in thef–c plane. It is clear
that only a small subset of this feasible region will be occu-
pied by jammed packings~for a givenjamming category!, as
schematically indicated in Fig. 1. Several limit points in this
region are particularly interesting.

~1! Point A corresponds to the lowest-density jammed
packing, and its location strongly depends on the jamming
category used. It can be shown that there are zero-density
locally jammed disk and sphere packings~see references and
discussion in Ref. 11!. However, for collectively and strictly
jammed packings, it is not known what are the lowest pos-
sible densities.

~2! PointB corresponds to the most dense jammed pack-
ing. It has of course already been identified to be a triangular
packing for disks and the FCC/HCP variant lattice for
spheres. But much less is known about polydisperse
packings,11,12 or packings of nonspherical particles.

~3! MRJ point represents the maximally random jammed
~MRJ! state,10 which has recently supplanted the ill-defined
‘‘random close packed’’~RCP! state. The RCP state was
widely believed to have a packing fractionw'0.63– 0.64 in
three dimensions. The MRJ state is the most disordered
jammed packing in a given jamming category~locally, col-
lectively, or strictly jammed!. The MRJ state is well-defined
for a given jamming category and choice of order metric.

Numerical algorithms have long been the primary tool
for studying random packings quantitatively. In a separate
paper,13 we introduced two algorithms to assess whether a
hard-sphere packing is locally, collectively, or strictly

jammed.7 The first algorithm targets packings with perfect
interparticle contacts, while the second allows for significant
interparticle gaps. Both algorithms are based on linear pro-
gramming and are applicable to both ordered and disordered
disk and sphere packings of arbitrary polydispersity. In Ref.
13 we give a complete description of the algorithms. Here
we demonstrate their applicability, usefulness, and efficiency
in analyzing large disordered packings, as produced by vari-
ous packing generation algorithms. Algorithms that generate
large-scale hard-particle packings are very important, espe-
cially because experimental hard-particle configurations are
difficult to obtain and are limited in applicability. Of particu-
lar interest are stochastic algorithms aimed at producingran-
dom (disordered) packings.

Through numerical investigations, we show here that
several previously used packing algorithms generate collec-
tively jammed packings under appropriate conditions. In par-
ticular, we study in detail monodisperse sphere as well as
monodisperse and bidisperse disk packings produced by the
Lubachevsky–Stillinger packing algorithm.14 We also tested
a sample of monodisperse sphere and bidisperse disk pack-
ings produced by the algorithm described in Ref. 15, as well
as monodisperse sphere packings produced by the Zinchenko
packing algorithm,16 and observed similar behavior as for the
Lubachevsky–Stillinger packings.

Our testing of these packings enables us to arrive at sev-
eral important conclusions. First, we find that the amorphous
monodisperse sphere packings~with covering fraction, or
density, w'0.64) and bidisperse disk packings (w'0.84)
are practically strictly jammed~though not in the ideal
sense!. Second, we observe that large monodisperse disk
packings are invariably highly crystalline (w'0.88) and are
only collectively jammed. Previously reported17 low cover-
ing fractions for ‘‘random close packed’’ disks ofw
'0.82– 0.84 were not even found to be collectively jammed.
This conclusion clearly demonstrates that the distinctions be-
tween the different jamming categories are important and
one cannot judge ‘‘stability’’ in packings based solely on
local criteria, as has been done extensively in the
literature.18–20 Preliminary investigations with an extension
of the Lubachevsky–Stillinger algorithm indicate that it is
possible to produce ideal strictly jammed packings, which is
important in order to eliminate finite-size boundary effects,
especially for monodisperse disk packings.

In Sec. II, we introduce important notation, definitions,
and review basic concepts. In Sec. III, we describe various
algorithms that are used to generate random packings. We
will analyze the resultant packings. In Sec. IV we discuss the
numerical implementation, and provide results for ordered
periodic lattice packings and random packings. Finally, we
conclude with a discussion of the results and future direc-
tions of investigation in Sec. V.

II. BACKGROUND AND METHODOLOGY

Here we briefly summarize some of the essential nota-
tion, problem statements, and methods, as described in detail

FIG. 1. A highly schematic plot of the jammed subspace in the density-
disorder plane.
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in Ref. 13. We consider a sphere packing in Euclidean
d-dimensional spaceRd, characterized by the positions of
the sphere centersR5(r1 ,...,rN),

P~R!5H r iPRd, i 51,...,N:ir i2r j i>
Di1D j

2
; j Þ i J ,

where the diameter of thei th sphere isDi , and here we
focus on monodisperse packings, i.e., packings where all the
spheres are identical,Di5D. Our perspective on jamming
focuses on the setJR of configurations around a particular
initial configuration R reachable viacontinuousdisplace-
ments of the spheresDR(t), subject to nonoverlapping con-
straints and certain boundary conditions. Heret is a time-like
parameter, and we will often drop it for brevity, but it should
be kept in mind that any change in configuration we consider
must be reachable via a continuous deformation. If the extent
of JR is small, in the sense that only small continuous dis-
placements of the particles from their initial configurations
are possible for allRPJR , the packing is considered
jammed. The natural length scale defining the meaning of
‘‘small’’ is the typical size of the particles, or the size of the
interparticle gaps, depending on the context and the type of
packing under consideration. In a jammedideal packing,
which has perfect interparticle contacts, the particles cannot
at all be displaced continuously from their current configu-
ration ~modulo trivial rigid-body motions!. By changing the
boundary conditions, we get several different categories of
jamming, namely local, collective, and strict jamming.7 We
briefly review these definitions for the convenience of the
reader in the following. We consider first ideal packings, and
discuss interparticle gaps in more detail as an extension.

We specialize these jamming definitions for periodic
sphere packings for concreteness, but packings in a concave
hard-wall containers can also be considered.Periodic (re-
petitive) packingsare characterized by a unit cell and a lat-
tice L5$l1 ,...,ld%, whereli are linearly independentlat-
tice vectors. We additionally allow the lattice to continuously
change byDL(t) as the particles displace, where«5«T

5(DL)L21 is the symmetricmacroscopic strain tensor.21,22

Finite systems of spheres are characterized as follows:

~1! Locally jammed: Each particle in the system is locally
trapped by its neighbors, i.e., it cannot be translated
while fixing the positions of all other particles. Each
sphere simply has to have at leastd11 contacts with
neighboring spheres, not all in the samed-dimensional
hemisphere.

~2! Collectively jammed: Any locally jammed configuration
where all finite subsets of particles are trapped by their
neighbors. For periodic boundary conditions, collective
jamming implies that there is no nonvanishing continu-
ous periodic displacement of the particlesDR(t) that
maintains impenetrability other than trivial uniform
translations of the packing, whilekeeping the lattice
fixed, DL(t)50.

~3! Strictly jammed: Any collectively jammed configuration
that disallows all globally uniform volume-
nonincreasing deformations of the system boundary. For
periodic packings, the boundary is in fact the lattice, and

strict jamming implies that there is no nonvanishing con-
tinuous periodicDR(t) which maintains impenetrability
other than trivial uniform translations of the packing,
even if we allow avolume-nonincreasing continuous lat-
tice deformationDL(t) ~this translates to a strain tensor
with a nonpositive trace!.

Observe that these jamming categories are orderedhierarchi-
cally, with local being a prerequisite for collective and simi-
larly collective being a prerequisite for strict jamming. It
should be mentioned that jammed random particle packings
produced experimentally or in simulations typically contain a
small population of ‘‘rattlers,’’ i.e., particles trapped in a cage
of jammed neighbors but free to move within the cage. For
present purposes we shall assume that these have been re-
moved before considering the~possibly! jammed remainder
~subpacking!.

In Ref. 13, we presented a randomized linear program-
ming ~LP! algorithm to test whether a given packing is
jammed or not, for each of the above-given jamming catego-
ries. The essential ingredient of this algorithm is to apply a
randomly selectedload ~i.e., a force! on each particle~lo-
cally, or collectively! and then solve a linear program which
takes into account a linearized version of the impenetrability
constraints between neighboring particles to find whether
~and how! the particles displace~and possible the lattice de-
forms! in order to support this applied load. If the particles
do not displace then we apply the load of opposite sign and
repeat the test. If the particles do not displace again, then the
ideal packing under consideration is jammed.

Computer-generated packings, which we analyze, are
never ideal and there are always small interparticle gaps be-
tween some particles, typically much less than a percent of
the typical particle sizeD. One can safely consider such
packings within the framework of ideal packings, with minor
modifications to the algorithm, as described in detail in Ref.
13. However, the either-or character of the above-mentioned
jamming criteria is often too restrictive or specialized when
analyzing large disordered packings with possibly larger in-
terparticle gaps, where particle displacements may be com-
parable to the typical particle size. Therefore, we investigate
ways to study jamming in this practical sense for suchnon-
ideal packings. We focus here on trying to judge theextentof
JR by trying to displace the spheres away from their current
position byas much as possible. In Ref. 13 we describe an
algorithm based on linear programming to do just this, and
the basic idea is to repeatedly apply a random load on the
particles, solve several linear programs, and displace the par-
ticles by as much as possible while still avoiding overlap,
until the particles rearrange and form contacts that actually
support the applied load. This is repeated for several random
loads, in the hope of exploringJR along several directions.
We can then actually quantitatively report the average/
maximal displacement of the particles that was observed, and
use this instead of a binary classification into packings which
are jammed and not jammed. The numerous intricacies of the
algorithm are discussed in detail in Ref. 13.

We have implemented these algorithms to test for jam-
ming in sphere packings and here we apply them to mono-
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disperse and bidisperse packings under periodic boundary
conditions. We present some representative but nonexhaus-
tive results for several periodic ordered lattice packings as
well as random packings obtained via the Lubachevsky–
Stillinger packing algorithm.14 We plot linear unjamming
motions as suitably scaled ‘‘velocity’’ fields, showing the di-
rection in which the particles can move~along a straight path
with in this linear algorithm! without violating impenetrabil-
ity. Numerous more illustrative and interactive Virtual Real-
ity Modeling Language~VRML ! animations can be viewed
on our webpage.23

III. PACKING GENERATION ALGORITHMS

We produced most packings using the Lubachevsky–
Stillinger compression algorithm14 with periodic boundary
conditions. This algorithm is essentially a hard-sphere mo-
lecular dynamics in which the spheres grow in size during
the course of the simulation at a certain expansion rate, until
a final state with diverging collision rate is reached.

We also obtained sample monodisperse sphere and bi-
disperse disk packings from the authors of Ref. 15. These
packings are not of perfectly hard spheres, but rather soft
spheres interacting via repulsive potentials when there is
overlap between the cores of diameterD. They use energy
minimization for harmonic and Hertzian potentials, descend-
ing to an energy minimum using the conjugate gradient al-
gorithm from a random initial configuration~i.e., a rapid
quench fromT5` to T50). The packings we analyzed
were just above the ‘‘jamming threshold’’ densityfc , mean-
ing that there was only very small~less than 1025D) overlap
between the outer cores. We therefore simply scaled the sizes
of the particles by a factor very close to unity to obtain
overlap-free hard-sphere packings. Since the jamming
threshold densities found in Ref. 15 were very close to the
final densities produced by the Lubachevsky–Stillinger algo-
rithm ~with reasonably large compression rates!, we expected
these packings to behave very similarly, and have confirmed
this with computational tests. Therefore, here we focus on
and present the results for the Lubachevsky–Stillinger pack-
ings.

We also had available disordered three-dimensional
packings produced with the contact network building
Zinchenko packing algorithm,16 and confirmed that they be-
haved like the packings produced by the other algorithms.
Unfortunately, we do not know of a two-dimensional imple-
mentation of this algorithm, and it is important to develop
one in the future and see whether it too produces near-
triangular packings.

More detailed results will be given shortly, but we want
to point out here that none of these algorithms produces truly
strictly jammed packingsa priori. Indeed, the packings that
that we tested were never truly strictly jammed. This is not
surprising because none of them incorporates deformations
of the periodic lattice, but rather, they all use a fixed~typi-
cally cubical! unit cell. It is not hard to incorporate boundary
deformations into these algorithms, and we are presently
working on such extensions. In particular, the Lubachevsky–
Stillinger algorithm can easily incorporate a deforming lat-

tice in the spirit of Parinello–Rahman molecular dynamics.24

We have in fact implemented such an extended
Lubachevsky–Stillinger algorithm and used it to producea
priori strictly jammed packings. Details of this work in
progress will be given in future papers, and here we will only
analyze some of the final packings produced by the algo-
rithm. In packing algorithms based on energy minimization,
as in Ref. 15, one need only include the strain as part of the
degrees of freedom in order to allow relaxation of the lattice
and produce strictly jammed packings. The same is true of
the Zinchenko packing algorithm.

On the other hand, all of these algorithms seem to pro-
duce collectively jammed packings in both two and three
dimensions, excluding rattlers and allowing for appropriate
numerical tolerances. This can be proved rigorously for the
Zinchenko packing algorithm, and under certain additional
assumptions also for the energy minimization algorithm. In
principle, only locally jammed configurations are possible
final states for the Lubachevsky–Stillinger algorithm since
they give infinite collision rates, however, we believe that
local configurations are unstable attractors for this algorithm
and in fact underappropriate conditionsall final states have
a collectively jammed subpacking, excluding rattlers. We
have recently devised a way to dynamically verify jamming
during the packing process in the Lubachevsky–Stillinger
algorithm for both packings of spheres and ellipsoids, how-
ever, details will be given in future publications.

IV. RESULTS

We have developed an efficient numerical implementa-
tion of the randomized LP algorithm using the primal-dual
interior-point algorithm in the LOQO optimization library.25

Both FORTRAN 95 codes which directly invoke the LOQO
library, and Algebraic Modeling Programming Language
~AMPL! models have been developed, along with VRML
visualization tools. Illustrations of results obtained using
these implementations are given throughout this paper. We
have applied the algorithms to test for the different jamming
categories in practice and verified their utility and efficiency.
Although reporting exhaustive results is not the primary aim
of this work, in this section we present some relevant results
for both ordered and disordered periodic packings. We have
analyzed disordered packings produced by a variety of pack-
ing algorithms, namely the Lubachevsky–Stillinger packing
algorithm,14 an energy minimization algorithm as presented
in Ref. 15, as well as the Zinchenko packing algorithm.16

A. Periodic lattice packings

Table 1 in Ref. 7 gives a classification of some common
simple lattice packings into jamming categories for hard-wall
boundary conditions. Table I modifies this for periodic
boundary conditions. The results in principle will depend on
the choice of unit cell, so the terminology ‘‘lattice XXX is
YYY jammed’’ is used loosely here. We illustrate some un-
jamming motions for lattice disk packings in Figs. 2 and 3.

Here we just point out for the curious that the triangular
lattice is not the only strictly jammed ordered disk packing;
two other examples are shown in Fig. 4.11 It can be shown
that one can remove at most one quarter of the disks from a
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triangular lattice packing and still maintain strict jamming.
Using the Lubachevsky–Stillinger packing algorithm for
small packings, we recently found a new family of strictly
jamming packings obtained by reinforcing with triangular
regions a particular tiling of the plane with three congruent
pentagons. An example is shown in Fig. 4.

B. Periodic random packings

We also tested a sample of periodic random packings in
two and three dimensions. Both monodisperse and bidisperse
packings were studied. The main reason for including bidis-
perse packings in this preliminary study is that monodisperse
disk packings crystallize easily, forming large ordered
almost-triangular domains~grains! with high packing frac-
tion w'0.88. This is because in two dimensions the locally
densest configuration coincides with the globally densest tri-
angular lattice, unlike in three dimensions, where the locally
optimal ~tetrahedral! configuration cannot tile three-
dimensional space.5 It is only by introducing polydispersity
that one can produce disk packings with no apparent~or
little! short-range order~i.e., amorphous!, as can be deter-
mined by, for example, bond-orientational order metrics,5

and in particular, thelocal Q6 order metric. We used an
equimolar mixture of disks with diameter ratio of 1.4 as done
in Ref. 15. For amorphous monodisperse three-dimensional
packings the typical packing fraction is aroundw'0.64, and

such a packing is shown in Fig. 5. For the aforementioned
amorphous binary disk packingsw'0.84, and such a pack-
ing is illustrated in Fig. 6.

In a truly disordered~generic! packing, it is expected
that the average number of interparticle contacts per particle
~coordination number! will be Z52d ~more precisely, twice
the number of degrees of freedom per particle!. Thus, it is
expected thatZ54 in two dimensions. However, collectively
jammed monodisperse disks packings are rather dense (w
'0.86– 0.88) and crystalline and they haveZ'5.5 ~This
should be compared toZ56 for the triangular crystal!. Dis-
ordered bidisperse disk packings do haveZ'4, and similarly
in three dimensions monodisperse packings haveZ'6, con-
sistent with an assumption of generic character. However, the
exact number one gets depends rather sensitively on the cri-
terion for assigning contacts and on whether rattling particles

FIG. 2. Simple collective mechanisms in the Kagome´ and honeycomb lat-
tices, respectively. These lattices are not collectively jammed with periodic
boundary conditions, as the sample unjamming motions for the Kagome´
~left! and for the honeycomb~right! packings shown here illustrate. The
shaded disks represent periodic images.

FIG. 3. Shearing the honeycomb lattice. The honeycomb lattice is not
strictly ~or collectively! jammed, and an example of a lattice deformation,
replicated on several unit cells to illustrate the shear character of the strain
«5(DL)L21. Note that only three~original! spheres are involved in the
actual calculation of this unjamming motion, the rest are image spheres.

TABLE I. Classification of some simple lattices into jamming categories for periodic boundary conditions. We
give the packing~i.e., covering! fraction w ~to three decimal places!, the coordination numberZ, and the
number of disks/spheresNs per unit cell, as well as an assessment of whether the lattice is locally~L!,
collectively ~C!, or strictly ~S! jammed~Y is jammed, N is not jammed!. We chose the smallest unit cells for
which an unjamming motion exists~illustrated on our webpage—Ref. 23!, if there is one.

Lattice w Z Ns L C S

Honeycomb 0.605 3 4 Y N N
Kagomé 0.680 6 3 Y N N
Square 0.785 4 2 Y N N

Triangular 0.907 6 1 Y Y Y
Diamond 0.340 4 4 Y N N

Simple cubic 0.524 6 2 Y N N
Body-centered cubic 0.680 8 2 Y N N
Face-centered cubic 0.741 12 1 Y Y Y

Hexagonal close-packing 0.741 12 2 Y Y Y
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are excluded or not. Future work will give a more detailed
and careful investigation of coordination number distribution
in disordered packings. For this work, it is important to note
that a large packing must haveZ>2d in order to be collec-

FIG. 4. Examples of strictly jammed latticesin two dimensions~from Ref.
13!. The 6/7th lattice~last packing in Ref. 11!, top, is obtained by removing
every seventh disk from the triangular lattice. The reinforced Kagome´ lat-
tice, middle, is obtained by adding an extra ‘‘row’’ and ‘‘column’’ of disks to
the Kagome´ lattice and thus has the same density in the thermodynamic
limit, namely, it has every fourth disk removed from the triangular packing
~see also Ref. 11!. It can be proven that this is the lowest density strictly
jammed subpacking of the triangular lattice. The pentagonal packing shown
at the bottom with 10 disks in the unit cell is obtained from a particular
tiling of the plane with three rotated congruent pentagons, and is just one
member of a whole family of strictly jammed packings.

FIG. 5. Virtually strictly jammed sphere packing. This random packing of
500 spheres with densityw50.64 was produced using the~original!
Lubachevsky–Stillinger algorithm and it is collectively jammed and practi-
cally strictly jammed. The~cubical! unit cell is also shown.

FIG. 6. Collectively jammed bidisperse disk packing. The algorithm to test
for collectivejamming in ideal packings was applied to this equimolar bid-
isperse disk packing of 250 disks (w50.846) in order to identify a jammed
subpacking of 232 disks, leaving 18 rattlers~colored black!, which are not
essential for jamming. The dotted disks represent periodic images. Note that
the density would be significantly lowered if the rattling particles were
removed.
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tively or strictly jammed, andZ>d11 to be locally jammed.
We also point out that our algorithm to test for jamming does
not depend sensitively on the criterion for selecting
contacts.13

1. Procedure

Although most of the packings we analyzed had small
interparticle gaps and can also be studied within the frame-
work of ideal packings and classified as jammed or not
jammed, we instead consider them nonideal and explicitly
deal with the interparticle gaps. We wish to stress that the
results to follow arenot averagesover many packings with
the same number of spheres/disks, but rather they are results
for particular packings produced by the Lubachevsky–
Stillinger algorithm. These packings seemed to be typical of
the types of packings produced by the algorithm under a
relatively wide range of expansion rates and packing sizes.
We therefore believe that the numbers presented here serve
well as a semiquantitative illustration of the behavior of ran-
dom disk and sphere packings commonly used in many com-
putational studies. The primary reason we do not give aver-
aged results this is that detailed average results should be
given only once it is determined what quantitative metric of
jamming is physically appropriate~which is likely to be dif-
ferent for different types of packings and different applica-
tions!, and results should also be correlated with more char-
acteristics of the packings~i.e., not just the covering fraction!
and to various relevant parameters of the algorithm used to
generate the packing.26

As a quantitative measure of jamming in these packings,
we report the average particle displacementiDr i i achieved
during random loading. This choice is not ideal, and attach-
ing a physical picture to the numbers is difficult. Further-
more, deciding when to terminate the Lubachevsky–
Stillinger algorithm is nontrivial and we used the principle of
allowing a certain number of binary collisions per particle
and also limiting the total computational time, which results
in larger packings not being as ‘‘well-packed’’ as smaller
packings. Visualization of the resulting particle displace-
ments is still the best way to analyze the results. For ex-
ample, rattlers often contribute most to the average displace-
ment for packings which might be ‘‘more jammed’’ if the
rattlers are removed. Moreover, although an entry in Table
IV below might say that the average displacement for a
monodisperse disk packing was only 10% of the particle
size, the character of the particle motion might be such that
very significant rearrangements happen in the packing be-
cause grain boundaries move~see Fig. 8!, and this has to be
seen to be appreciated. We will share our VRML visualiza-
tions with interested readers, and many examples are pro-
vided on our webpage.23

Another statistic we report is the time~in seconds! spent
by the AMPL implementation~with some FORTRAN! of the
testing algorithm on a typical personal computer.~More pre-
cisely, calculations were performed on a 1666 MHz AMD
Athlon PC running Linux.! Since most of the computational
time is spent in LOQO, similar running times are typical of
the FORTRAN codes as well. For each packing, we applied
three different random loads~with opposite orientations!, and

for each load we successively solved three linear programs
~so a total of 18 linear programs for each packing!. The
running times to follow should not be taken as a measure of
the scaling of the LP solver computational effort with the
number of spheres, but rather as typical runtimes for some
representative packing sizes. This is because the computa-
tional effort depends nontrivially on many of the parameters
in the algorithm, and on the exact implementation. We are
currently developing more efficient and robust implementa-
tions of these algorithms, for both packings of disks/spheres
and ellipses/ellipsoids.

2. Summary of results

Qualitatively different results were observed for the
amorphous monodisperse sphere packings and binary disk
packings, and the polycrystalline monodisperse disk pack-
ings.

For the amorphous packings, we give results in Table II
for monodisperse packings in three dimensions and in Table
III for bidisperse packings in two dimensions, with similar
trends. In general, these packingswerecollectively jammed,
in the sense that only small~average! displacements of the
particles are possible. The small feasible displacements are
mostly due to rattlers and/or early termination of the packing
algorithm and we believe that any true final Lubachevsky–
Stillinger packing with infinite collision rate will in fact have
an ideal collectively jammed subpacking~similarly for the
other packing algorithms!. The packingswere not strictly
jammed for small system sizes, however, the magnitude of

TABLE II. Results for monodisperse sphere packings. The columns are as
in Table III, and here we show the running times for both the testing for
collective and strict jamming.

N f t ~s! coll t ~s! strict iDr i i /D coll iDr i i /D strict

50 0.628 23 29 0.0012 0.12
100 0.644 53 76 0.00043 0.15
250 0.636 164 210 0.0021 0.031
500 0.641 480 597 0.0037 0.014
750 0.641 900 1017 0.0015 0.0035
1000 0.642 1822 1866 0.011 0.013

TABLE III. Results of the nonideal randomized LP algorithm for equimolar
binary disk packings of diameter ratio 1.4. The first column shows the total
number of particlesN, the second the packing fraction, the third the running
time for the AMPL model that tests for collective jamming, and the last two
columns show the average particle displacement during collective~i.e., with
a fixed lattice! and strict jamming~i.e., with a deforming lattice! testing.
Notice that the displacements are significantly larger for the strict jamming
test, especially for small packings.

N f t ~s! coll iDr i i /Di coll iDr i i /Di strict

50 0.845 2.1 0.010 0.060
100 0.842 6.4 0.0034 0.011
250 0.846 21 0.0037 0.0053
500 0.847 72 0.0016 0.0067
750 0.849 88 0.0022 0.012
1000 0.849 130 0.0016 0.018
1500 0.848 247 0.0016 0.020
2500 0.849 248 0.0039 0.010
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the feasible displacements decreased as the packings became
larger, and thereforelarge amorphous packings were appar-
ently collectively and strictly jammed. This can be under-
stood by thinking of the distinction between collective and
strict jamming as a boundary effect: As the packings become
larger the boundary effects diminish. Therefore, even though
none of the packing algorithms is meant to produce strictly
jammed packingsa priori, they do so for large amorphous
packings.

Importantly, very different results were observed for
monodisperse disk packings, which are invariantly nearly tri-
angular~i.e., crystalline!. We wish to point out that crystal-
lization into a triangular lattice poses a convergence obstacle
for the Lubachevsky–Stillinger algorithm since near triangu-
lar regions have very high collision rates even when the
disks’ diameters are not at their maximal value. Therefore it
was only for monodisperse disk packings that some of the
final packings were not collectively jammed~large particle
rearrangements were possible near grain boundaries!. Most
packings were however collectively jammed just as for

amorphous packings and we present results for these in Table
IV. By using certain tricks in the Lubachevsky–Stillinger
algorithm, such as collections of frozen particles or very
large expansion rates, one can obtain apparently ‘‘jammed’’
amorphous monodisperse disk packings near a packing frac-
tion w'0.83. However, due to numerical instabilities or the
presence of an artificial boundary of fixed disks, these pack-
ings were notcollectively jammed, as illustrated in Fig. 7.
One of the important observations is thatnone of the large
Lubachevsky–Stillinger monodisperse disk packings were
strictly jammed. In fact, typical grain boundaries are very
fragile under shear, and so even for the large packings sig-
nificant rearrangements of the grain boundaries are feasible,
as illustrated in Fig. 8.

FIG. 7. Locally jammed disk packing. A random packing (w50.82) of 1000
disks that isnot collectively jammed, and a representative periodic unjam-
ming motion. More insightful animations can be found on our webpage
~Ref. 23!.

FIG. 8. Collectively jammed disk packing. A dense(w50.89) random pack-
ing of 1000 disks that iscollectively jammed but not strictly jammed, and a
representative unjamming motion. One can see the grains gliding over each
grain boundary due to the shear, bringing this packing closer to a triangular
lattice.

TABLE IV. Results for monodisperse disk packings. The columns are as in
Table III. Notice the very large displacements during the test for strict jam-
ming, even for large packings, as well as the high packing densities for
larger packings.

N f t ~s! coll iDr i i /D coll iDr i i /D strict

50 0.832 2.9 0.0022 0.39
100 0.863 8.9 5.431028 0.18
250 0.886 21 0.0014 0.86
500 0.891 78 6.731025 0.16
750 0.887 103 0.0040 0.26
1000 0.882 153 0.0017 0.23

TABLE V. The average particle displacementiDr i i /D during the test for
collective jamming is shown for a series of sphere packings produced by the
~original! Lubachevsky–Stillinger algorithm. From top to bottom the pack-
ing size N increases, and from left to right the number of collisions per
particleNcoll ~in thousands! increases~and thus the density also slowly in-
creases!. No special handling of rattlers was employed. It is easily observed
that the packings uniformly become ‘‘more jammed’’ as the packing algo-
rithm is run longer~though rattlers may continue to give a finite contribution
to the observed displacements!. Similar behavior is expected of any algo-
rithm which in the limit of infinite numerical precision produces packings
with a collectively jammed subpacking.

N/Ncoll(103) 1 5 10 25

50 0.041 0.015 0.0018 4.9310210

100 0.036 0.016 0.0011 0.000 14
250 0.050 0.023 0.0015 0.000 36
500 0.047 0.024 0.0028 0.001 4
750 0.046 0.019 0.0030 0.001 1
1000 0.052 0.020 0.0025 0.000 67
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It is also important to verify that any packing algorithm
claimed to produce jammed packings can indeed produce
jammed ideal packings, in the sense that all tolerances in the
test for jamming can be tightened progressively as the nu-
merical accuracy is increased and the convergence criteria in
the packing algorithm are tightened. We demonstrate this for
collective jamming in monodisperse sphere packings in
Table V. The corresponding results for strict jamming, given
in Table VI, illustrate that the~traditional! Lubachevsky–
Stillinger packings do not have a strictly jammed ideal sub-
packing, but are practically strictly jammed for large system
sizes. This is unlike monodisperse disk packings, which are
far from being strictly jammed, as illustrated in Table VII.

Very recently, we have implemented an extension of the
Lubachevsky–Stillinger packing algorithm in which the lat-
tice deforms during the molecular dynamics run, as dictated
by the collisional~contact! stress induced by the particle col-
lection. Details of the algorithm and the packings it produces
will be given elsewhere, but a short description can be found
in Ref. 13. For relatively small numbers of particles, this
algorithm typically produces truly strictly jammed packings,
and for these packingsiDr i i is similar for both collective
and strict jamming. The algorithm produces similar amor-
phous packings~in packing fraction and disorder! to the
original Lubachevsky–Stillinger algorithm, however, for
monodisperse disks it frequently terminates with completely
crystal packings, and also produces complete triangular lat-
tices with special types of defects, such as monovacancies
and peculiar ‘‘dislocation cores.’’ One such strictly jammed
disk packing is shown in Fig. 9. Investigation of these
strictly jammed disk packings as well as extensions of other
packing algorithms to allow for deforming boundaries are

being carried out at present. We note in passing that we also
used the extended Lubachevsky–Stillinger algorithm to try
the shrink-and-bump heuristic13 to test for strict jamming by
also allowing the lattice to deform while the particles bump
around. This seemed to detect disordered packings which are
not strictly jammed, however, the test is significantly slower
than the linear programming algorithm and is also very heu-
ristic and much less reliable.

V. DISCUSSION, FUTURE WORK, AND CONCLUSIONS

Our results have important implications for the classifi-
cation of random disk and sphere packings and suggest a
number of interesting avenues of inquiry for future investi-
gations. Random disk packings are less well understood than
sphere packings. The tendency of disk packings to ‘‘crystal-
lize’’ ~to form ordered, locally dense domains! at sufficiently
high densities is well established. For example, Quickenden
and Tan experimentally estimated the packing fraction of the
‘‘random close packed’’~RCP! state to bew'0.83 and found
that the packing fraction could be further increased until the
maximum value ofw50.906 is achieved for the triangular
lattice packing.27 By contrast, random sphere packings atw
in the range 0.63–0.66 cannot be made more dense.

Our recent understanding of the ill-defined nature of ran-
dom close packing and of jamming categories raises serious
questions about previous two-dimensional studies, particu-
larly the stability of such packings. Our present study sug-
gests that disordered random disk packings are not collec-
tively jammed atw'0.83; at best they may be locally

FIG. 9. Strictly jammed disk packing. We show here 232 unit cells of a
dense(w50.88) random packing of 250 disks that isstrictly jammed,
modulo four rattling particles, shown in black. This packing was produced
with the extended Lubachevsky–Stillinger algorithm which allows for de-
formations of the lattice during the compression. We also display the contact
network of the packing. The striking feature of this and similar strictly
jammed disk packings we have produced is the appearance of peculiar ‘‘dis-
location cores’’ and the appearance of large perfectly triangular regions.

TABLE VI. The analog of Table V but for strict jamming. In this case it is
seen that the average displacements do not converge uniformly toward zero,
an indication that the packings do not have a strictly jammed ideal subpack-
ing ~similar results are observed for amorphous binary disk packings!. How-
ever, the average displacements are quite small for large packings~this is
even more pronounced for the binary disk packings!.

N/Ncoll(103) 1 5 10 25

50 0.083 0.057 0.059 0.051
100 0.066 0.042 0.023 0.026
250 0.052 0.027 0.010 0.0097
500 0.056 0.024 0.012 0.010
750 0.048 0.027 0.014 0.014
1000 0.060 0.025 0.0040 0.0021

TABLE VII. Just as an illustration, shown are the results for a two-
dimensional disk packing with 250 disks, corresponding to the results pre-
sented for amorphous sphere packings in Tables V and VI. It is seen that
although the packing has an ideal collectively jammed subpacking, it is
clearly far from being strictly jammed, as typical for monodisperse disk
packings produced by the Lubachevsky–Stillinger packing algorithm with a
fixed lattice.

Ncoll(103) 1 5 10 25

Collective 0.12 0.007 0.000 50 1.731025

Strict 0.45 0.24 0.12 0.12
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jammed. This brings into question the previous widespread
belief that the two-dimensional analog of the RCP sphere-
packing state has density aboutw'0.82– 0.83.17 Collec-
tively jammed disk packings seem to have significantly
higher densitiesw'0.88 and consist of large triangular
grains, but even at such high densities they are not strictly
jammed. An interesting question is whether the grain size
becomes small compared to the system size for large collec-
tively jammed disk packings, or whether the appearance of
grain boundaries is in fact a finite-size boundary effect. It
may be that the preponderance of collectively and strictly
jammed large disk packings are very crystalline, with a dis-
tribution of the local bond-orientational parameterQ6 ~see
Ref. 5! highly peaked around some relatively large value.
Furthermore, it is important to ascertain if the strong distinc-
tion between only collectively and strictly jammed disk
packings persists in the limit of very large packings. Careful
investigations of very large collectively and strictly jammed
disk packings produced with a variety of packing algorithms
are still required to answer these questions.

The old concept of the RCP state incorrectly did not
account for the jamming category of the packing. Previous
attempts to estimate the packing fraction of the ‘‘random
loose’’ state18 are even more problematic, given that this term
is even less well-defined than the RCP state. Furthermore, as
our investigations of disk packings show, the ‘‘stability’’ of
packings cannot be judged based solely on local criteria, as
suggested in Ref. 20 for sphere packings, and using such
local criteria in estimating mean coordination numbers or
densities of packings18,19 is at best an exercise in modeling
locally jammed packings. The best way to categorize random
disk packings is to determine the maximally random jammed
~MRJ! state10 for each of the three jamming categories~local,
collective, and strict!. Such investigations will be carried out
in the future, and we have some preliminary results and
promising avenues of approach.

The identification of the MRJ state for strictly jammed
disk packings is an intriguing open problem. On the one
hand, we have shown that random packings exist with den-
sities in the vicinity of the maximum possible value (w
5 p/(2))) that are not strictly jammed, and on the other
hand, there is a conjectured achievable lower boundw
>)p/8 corresponding to the ‘‘reinforced’’ Kagome´ lattice
~see Fig. 4!. It may therefore be that the search for the MRJ
state for strictly jammed disk packings should focus on ran-
domly diluted triangular packings. For random sphere pack-
ings, an initial study undertaken in Ref. 26, using the LP
algorithm described in this work, found that maximally dis-
ordered random packings aroundw'0.63 were strictly
jammed, suggesting a close relation between the convention-
ally accepted RCP state and the MRJ state for strictly
jammed packings. Much less obvious is what the MRJ state
for collectively jammed sphere packings is. Finally, a com-
pletely unexplored question concerns the identification of the
MRJ state for locally jammed disk and sphere packings.

The jamming concepts and algorithms presented here
can be extended to packings of nonspherical particles with
certain nontrivial modifications, however, mathematical de-
velopments in this area are lacking. We are investigating

such extensions and will report our findings in future work.
Other important tasks include extending various packing
generation algorithms to generate strictly jammed packings,
as well as designing algorithms with guarantees of producing
jammed packings. An even more challenging task is design-
ing packing algorithms that can produce jammed packings
with certain target properties, such as a certain density and
degree of order. The algorithms to test for jamming, and
more generally to explore the set of reachable configurations
JR for hard-particle packings can be further improved. In
particular, a carefully tuned implementation of linear solvers
for three-dimensional packings is needed as a building block
in implementations of various nonlinear programming algo-
rithms related to packings. Development of such implemen-
tations and extensions is also under way. Finally, there are
many open questions related to the enumeration and classi-
fication of random hard-particle packings that might be an-
swered with the application of these tools.

In Ref. 13 and this work we have proposed, imple-
mented, and tested a practical algorithm for verifying jam-
ming categories in finite sphere packings based on linear
programming. We demonstrated its simplicity and utility, and
presented some representative results for ordered lattices and
random packings. Interestingly, the large computer-generated
monodisperse random packings that we tested were virtually
strictly jammed in three dimensions, butnot in two dimen-
sions. Future extensions and applications of the proposed
algorithms are awaiting exploration. Work is already under
way to provide highly efficient implementations of various
optimization algorithms for linear and nonlinear program-
ming on large-scale~contact! networks.

ACKNOWLEDGMENTS

We would like to thank Andrea Liu and Corey O’Hern
for providing us with sample packings and helpful e-mail
discussions. A.D. and S.T. were supported by the Petroleum
Research Fund as administered by the American Chemical
Society and by the MRSEC Grant at Princeton University,
NSF DMR-0213706. R.C. was partially supported by NSF
Grant No. DMS-0209595.

1Granular Matter, edited by A. Mehta~Springer, New York, 1994!.
2S. F. Edwards and D. V. Grinev, Chem. Eng. Sci.56, 5451~2001!.
3R. Zallen,The Physics of Amorphous Solids~Wiley, New York, 1983!.
4J. P. Hansen and I. R. McDonald,Theory of Simple Liquids~Academic,
New York, 1986!.

5S. Torquato,Random Heterogeneous Materials: Microstructure and Mac-
roscopic Properties~Springer, New York, 2002!.

6T. Aste and D. Weaire,The Pursuit of Perfect Packing~IOP, Bristol,
2000!.

7S. Torquato and F. H. Stillinger, J. Phys. Chem. B105, 11849~2001!.
8R. Connelly, K. Bezdek, and A. Bezdek, Discrete Comput. Geom.20, 111
~1998!.

9Rigidity Theory and Applications, edited by M. F. Thorpe and P. M. Dux-
bury, Fundamental Materials Research~Kluwer/Plenum, Dordrecht,
1999!.

10S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett.84,
2064 ~2000!.

11F. H. Stillinger, H. Sakai, and S. Torquato, Phys. Rev. E67, 031107
~2003!.

12L. F. Toth,Regular Figures~Pergamon, New York, 1964!.
13A. Donev, S. Torquato, F. H. Stillinger, and R. Connelly J. Comput. Phys.

~in press!.

998 J. Appl. Phys., Vol. 95, No. 3, 1 February 2004 Donev et al.

Downloaded 26 May 2004 to 128.112.80.53. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



14B. D. Lubachevsky and F. H. Stillinger, J. Stat. Phys.60, 561 ~1990!; B.
D. Lubachevsky, F. H. Stillinger, and E. N. Pinson, J. Stat. Phys.64, 501
~1991!, second part of Ref. 14.

15C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett.88,
075507~2002!.

16A. Zinchenko, J. Comput. Phys.114, 298 ~1994!.
17J. G. Berryman, Phys. Rev. A27, 1053 ~1983!, see also references con-

tained therein.
18W. Uhler and R. Schilling, J. Phys. C18, L979 ~1985!.
19D. E. G. Williams, J. Phys. C18, L181 ~1985!.
20E. A. J. F. Peters, M. Kollmann, T. M. A. O. M. Barenbrug, and A. P.

Philipse, Phys. Rev. E63, 021404~2001!.
21A. Donev and S. Torquato, J. Mech. Phys. Solids51, 1459~2003!.

22S. Torquato, A. Donev, and F. H. Stillinger, Int. J. Solids Struct.40, 7143
~2003!.

23A. Donev, http://atom.princeton.edu/donev/Packing, homepage for the
sphere packing project, with useful supplementary materials.

24M. Parinello and A. Rahman, J. Appl. Phys.52, 7182~1981!.
25WWW, the general purpose interior-point LOQO optimization library is

not public-domain, but can be tried at http://orfe.princeton.edu/˜ loqo/. The

public-domain PCx library implements interior point linear programming
algorithms and can be found at http://www-fp.mcs.anl.gov/otc/Tools/PCx/.

26A. R. Kansal, S. Torquato, and F. H. Stillinger, Phys. Rev. E66, 041109
~2002!.

27T. J. Quickenden and G. K. Tan, J. Colloid Interface Sci.48, 382 ~1974!.

999J. Appl. Phys., Vol. 95, No. 3, 1 February 2004 Donev et al.

Downloaded 26 May 2004 to 128.112.80.53. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


